Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution

Identifieur interne : 000060 ( PascalFrancis/Corpus ); précédent : 000059; suivant : 000061

Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution

Auteurs : Shiri Avnery ; Denise L. Mauzerall ; JUNFENG LIU ; Larry W. Horowitz

Source :

RBID : Pascal:11-0255955

Descripteurs français

English descriptors

Abstract

We examine the potential global risk of increasing surface ozone (O3) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O3 pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O3 precursor emissions in 2030. We use simulated hourly O3 concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O3 exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O3 on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O3 exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth $17-35 billion USD2000 annually (an increase of +$6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth $12-21 billion annually (an increase of +$1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O3 pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O3 concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1352-2310
A03   1    @0 Atmos. environ. : (1994)
A05       @2 45
A06       @2 13
A08 01  1  ENG  @1 Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution
A11 01  1    @1 AVNERY (Shiri)
A11 02  1    @1 MAUZERALL (Denise L.)
A11 03  1    @1 JUNFENG LIU
A11 04  1    @1 HOROWITZ (Larry W.)
A14 01      @1 Program in Science, Technology, and Environmental Policy, Woodrow Wilson School of Public and International Affairs, 414 Robertson Hall, Princeton University @2 Princeton, NJ 08544 @3 USA @Z 1 aut.
A14 02      @1 Woodrow Wilson School of Public and International Affairs, Department of Civil and Environmental Engineering, 445 Robertson Hall, Princeton University @2 Princeton, NJ 08544 @3 USA @Z 2 aut.
A14 03      @1 NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton University @2 Princeton, NJ 08540 @3 USA @Z 3 aut. @Z 4 aut.
A20       @1 2297-2309
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 8940B @5 354000192901550150
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 1 p.
A47 01  1    @0 11-0255955
A60       @1 P
A61       @0 A
A64 01  1    @0 Atmospheric environment : (1994)
A66 01      @0 GBR
C01 01    ENG  @0 We examine the potential global risk of increasing surface ozone (O3) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O3 pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O3 precursor emissions in 2030. We use simulated hourly O3 concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O3 exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O3 on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O3 exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth $17-35 billion USD2000 annually (an increase of +$6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth $12-21 billion annually (an increase of +$1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O3 pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O3 concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation.
C02 01  X    @0 001D16C
C03 01  X  FRE  @0 Ozone @2 NK @2 FX @5 01
C03 01  X  ENG  @0 Ozone @2 NK @2 FX @5 01
C03 01  X  SPA  @0 Ozono @2 NK @2 FX @5 01
C03 02  X  FRE  @0 Pollution @5 02
C03 02  X  ENG  @0 Pollution @5 02
C03 02  X  SPA  @0 Polución @5 02
C03 03  X  FRE  @0 Trajectoire @5 03
C03 03  X  ENG  @0 Trajectory @5 03
C03 03  X  SPA  @0 Trayectoria @5 03
C03 04  X  FRE  @0 Changement climatique @5 04
C03 04  X  ENG  @0 Climate change @5 04
C03 04  X  SPA  @0 Cambio climático @5 04
C03 05  X  FRE  @0 Prévision pollution atmosphérique @5 05
C03 05  X  ENG  @0 Atmospheric pollution forecasting @5 05
C03 05  X  SPA  @0 Previsión contaminación del ambiente @5 05
C03 06  X  FRE  @0 Précurseur @5 06
C03 06  X  ENG  @0 Precursor @5 06
C03 06  X  SPA  @0 Precursor @5 06
C03 07  X  FRE  @0 Modélisation @5 07
C03 07  X  ENG  @0 Modeling @5 07
C03 07  X  SPA  @0 Modelización @5 07
C03 08  X  FRE  @0 Traceur @5 08
C03 08  X  ENG  @0 Tracers @5 08
C03 08  X  SPA  @0 Trazador @5 08
C03 09  X  FRE  @0 Sol agricole @2 NT @5 09
C03 09  X  ENG  @0 Agricultural soil @2 NT @5 09
C03 09  X  SPA  @0 Suelo agrícola @2 NT @5 09
C03 10  X  FRE  @0 Production agricole @5 10
C03 10  X  ENG  @0 Agricultural production @5 10
C03 10  X  SPA  @0 Producción agrícola @5 10
C03 11  X  FRE  @0 Agriculture @5 11
C03 11  X  ENG  @0 Agriculture @5 11
C03 11  X  SPA  @0 Agricultura @5 11
C03 12  X  FRE  @0 Industrie alimentaire @5 12
C03 12  X  ENG  @0 Food industry @5 12
C03 12  X  SPA  @0 Industria alimenticia @5 12
C03 13  X  FRE  @0 Engrais @5 13
C03 13  X  ENG  @0 Fertilizers @5 13
C03 13  X  SPA  @0 Fertilizante @5 13
C03 14  X  FRE  @0 Fertilisation @5 14
C03 14  X  ENG  @0 Fertilization @5 14
C03 14  X  SPA  @0 Fertilización @5 14
C03 15  X  FRE  @0 Phénomène transport @5 35
C03 15  X  ENG  @0 Transport process @5 35
C03 15  X  SPA  @0 Fenómeno transporte @5 35
C03 16  X  FRE  @0 Localisation source @5 36
C03 16  X  ENG  @0 Source localization @5 36
C03 16  X  SPA  @0 Localización fuente @5 36
C07 01  X  FRE  @0 Climatologie dynamique
C07 01  X  ENG  @0 Dynamical climatology
C07 01  X  SPA  @0 Climatología dinámica
N21       @1 171
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0255955 INIST
ET : Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution
AU : AVNERY (Shiri); MAUZERALL (Denise L.); JUNFENG LIU; HOROWITZ (Larry W.)
AF : Program in Science, Technology, and Environmental Policy, Woodrow Wilson School of Public and International Affairs, 414 Robertson Hall, Princeton University/Princeton, NJ 08544/Etats-Unis (1 aut.); Woodrow Wilson School of Public and International Affairs, Department of Civil and Environmental Engineering, 445 Robertson Hall, Princeton University/Princeton, NJ 08544/Etats-Unis (2 aut.); NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton University/Princeton, NJ 08540/Etats-Unis (3 aut., 4 aut.)
DT : Publication en série; Niveau analytique
SO : Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2011; Vol. 45; No. 13; Pp. 2297-2309; Bibl. 1 p.
LA : Anglais
EA : We examine the potential global risk of increasing surface ozone (O3) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O3 pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O3 precursor emissions in 2030. We use simulated hourly O3 concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O3 exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O3 on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O3 exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth $17-35 billion USD2000 annually (an increase of +$6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth $12-21 billion annually (an increase of +$1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O3 pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O3 concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation.
CC : 001D16C
FD : Ozone; Pollution; Trajectoire; Changement climatique; Prévision pollution atmosphérique; Précurseur; Modélisation; Traceur; Sol agricole; Production agricole; Agriculture; Industrie alimentaire; Engrais; Fertilisation; Phénomène transport; Localisation source
FG : Climatologie dynamique
ED : Ozone; Pollution; Trajectory; Climate change; Atmospheric pollution forecasting; Precursor; Modeling; Tracers; Agricultural soil; Agricultural production; Agriculture; Food industry; Fertilizers; Fertilization; Transport process; Source localization
EG : Dynamical climatology
SD : Ozono; Polución; Trayectoria; Cambio climático; Previsión contaminación del ambiente; Precursor; Modelización; Trazador; Suelo agrícola; Producción agrícola; Agricultura; Industria alimenticia; Fertilizante; Fertilización; Fenómeno transporte; Localización fuente
LO : INIST-8940B.354000192901550150
ID : 11-0255955

Links to Exploration step

Pascal:11-0255955

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O
<sub>3</sub>
pollution</title>
<author>
<name sortKey="Avnery, Shiri" sort="Avnery, Shiri" uniqKey="Avnery S" first="Shiri" last="Avnery">Shiri Avnery</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Program in Science, Technology, and Environmental Policy, Woodrow Wilson School of Public and International Affairs, 414 Robertson Hall, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mauzerall, Denise L" sort="Mauzerall, Denise L" uniqKey="Mauzerall D" first="Denise L." last="Mauzerall">Denise L. Mauzerall</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Woodrow Wilson School of Public and International Affairs, Department of Civil and Environmental Engineering, 445 Robertson Hall, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Junfeng Liu" sort="Junfeng Liu" uniqKey="Junfeng Liu" last="Junfeng Liu">JUNFENG LIU</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton University</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton University</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0255955</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0255955 INIST</idno>
<idno type="RBID">Pascal:11-0255955</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000060</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O
<sub>3</sub>
pollution</title>
<author>
<name sortKey="Avnery, Shiri" sort="Avnery, Shiri" uniqKey="Avnery S" first="Shiri" last="Avnery">Shiri Avnery</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Program in Science, Technology, and Environmental Policy, Woodrow Wilson School of Public and International Affairs, 414 Robertson Hall, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mauzerall, Denise L" sort="Mauzerall, Denise L" uniqKey="Mauzerall D" first="Denise L." last="Mauzerall">Denise L. Mauzerall</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Woodrow Wilson School of Public and International Affairs, Department of Civil and Environmental Engineering, 445 Robertson Hall, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Junfeng Liu" sort="Junfeng Liu" uniqKey="Junfeng Liu" last="Junfeng Liu">JUNFENG LIU</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton University</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton University</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Atmospheric environment : (1994)</title>
<title level="j" type="abbreviated">Atmos. environ. : (1994)</title>
<idno type="ISSN">1352-2310</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agricultural production</term>
<term>Agricultural soil</term>
<term>Agriculture</term>
<term>Atmospheric pollution forecasting</term>
<term>Climate change</term>
<term>Fertilization</term>
<term>Fertilizers</term>
<term>Food industry</term>
<term>Modeling</term>
<term>Ozone</term>
<term>Pollution</term>
<term>Precursor</term>
<term>Source localization</term>
<term>Tracers</term>
<term>Trajectory</term>
<term>Transport process</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Ozone</term>
<term>Pollution</term>
<term>Trajectoire</term>
<term>Changement climatique</term>
<term>Prévision pollution atmosphérique</term>
<term>Précurseur</term>
<term>Modélisation</term>
<term>Traceur</term>
<term>Sol agricole</term>
<term>Production agricole</term>
<term>Agriculture</term>
<term>Industrie alimentaire</term>
<term>Engrais</term>
<term>Fertilisation</term>
<term>Phénomène transport</term>
<term>Localisation source</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We examine the potential global risk of increasing surface ozone (O
<sub>3</sub>
) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O
<sub>3</sub>
pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O
<sub>3</sub>
precursor emissions in 2030. We use simulated hourly O
<sub>3</sub>
concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O
<sub>3</sub>
exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O
<sub>3</sub>
on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O
<sub>3</sub>
exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth $17-35 billion USD
<sub>2000</sub>
annually (an increase of +$6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth $12-21 billion annually (an increase of +$1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O
<sub>3</sub>
pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O
<sub>3</sub>
concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1352-2310</s0>
</fA01>
<fA03 i2="1">
<s0>Atmos. environ. : (1994)</s0>
</fA03>
<fA05>
<s2>45</s2>
</fA05>
<fA06>
<s2>13</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O
<sub>3</sub>
pollution</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AVNERY (Shiri)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MAUZERALL (Denise L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JUNFENG LIU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HOROWITZ (Larry W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Program in Science, Technology, and Environmental Policy, Woodrow Wilson School of Public and International Affairs, 414 Robertson Hall, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Woodrow Wilson School of Public and International Affairs, Department of Civil and Environmental Engineering, 445 Robertson Hall, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton University</s1>
<s2>Princeton, NJ 08540</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>2297-2309</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8940B</s2>
<s5>354000192901550150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0255955</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Atmospheric environment : (1994)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We examine the potential global risk of increasing surface ozone (O
<sub>3</sub>
) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O
<sub>3</sub>
pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O
<sub>3</sub>
precursor emissions in 2030. We use simulated hourly O
<sub>3</sub>
concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O
<sub>3</sub>
exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O
<sub>3</sub>
on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O
<sub>3</sub>
exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth $17-35 billion USD
<sub>2000</sub>
annually (an increase of +$6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth $12-21 billion annually (an increase of +$1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O
<sub>3</sub>
pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O
<sub>3</sub>
concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Ozone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Ozono</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Pollution</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Pollution</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Polución</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Trajectoire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Trajectory</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Trayectoria</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Changement climatique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Climate change</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Cambio climático</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Prévision pollution atmosphérique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Atmospheric pollution forecasting</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Previsión contaminación del ambiente</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Précurseur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Precursor</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Precursor</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Traceur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tracers</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Trazador</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Sol agricole</s0>
<s2>NT</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Agricultural soil</s0>
<s2>NT</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Suelo agrícola</s0>
<s2>NT</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Production agricole</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Agricultural production</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Producción agrícola</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Agriculture</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Agriculture</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Agricultura</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Industrie alimentaire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Food industry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Industria alimenticia</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Engrais</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Fertilizers</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Fertilizante</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Fertilisation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Fertilization</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Fertilización</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Phénomène transport</s0>
<s5>35</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Transport process</s0>
<s5>35</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Fenómeno transporte</s0>
<s5>35</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Localisation source</s0>
<s5>36</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Source localization</s0>
<s5>36</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Localización fuente</s0>
<s5>36</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Climatologie dynamique</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Dynamical climatology</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Climatología dinámica</s0>
</fC07>
<fN21>
<s1>171</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0255955 INIST</NO>
<ET>Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O
<sub>3</sub>
pollution</ET>
<AU>AVNERY (Shiri); MAUZERALL (Denise L.); JUNFENG LIU; HOROWITZ (Larry W.)</AU>
<AF>Program in Science, Technology, and Environmental Policy, Woodrow Wilson School of Public and International Affairs, 414 Robertson Hall, Princeton University/Princeton, NJ 08544/Etats-Unis (1 aut.); Woodrow Wilson School of Public and International Affairs, Department of Civil and Environmental Engineering, 445 Robertson Hall, Princeton University/Princeton, NJ 08544/Etats-Unis (2 aut.); NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Road, Princeton University/Princeton, NJ 08540/Etats-Unis (3 aut., 4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Atmospheric environment : (1994); ISSN 1352-2310; Royaume-Uni; Da. 2011; Vol. 45; No. 13; Pp. 2297-2309; Bibl. 1 p.</SO>
<LA>Anglais</LA>
<EA>We examine the potential global risk of increasing surface ozone (O
<sub>3</sub>
) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O
<sub>3</sub>
pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O
<sub>3</sub>
precursor emissions in 2030. We use simulated hourly O
<sub>3</sub>
concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O
<sub>3</sub>
exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O
<sub>3</sub>
on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O
<sub>3</sub>
exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth $17-35 billion USD
<sub>2000</sub>
annually (an increase of +$6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth $12-21 billion annually (an increase of +$1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O
<sub>3</sub>
pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O
<sub>3</sub>
concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation.</EA>
<CC>001D16C</CC>
<FD>Ozone; Pollution; Trajectoire; Changement climatique; Prévision pollution atmosphérique; Précurseur; Modélisation; Traceur; Sol agricole; Production agricole; Agriculture; Industrie alimentaire; Engrais; Fertilisation; Phénomène transport; Localisation source</FD>
<FG>Climatologie dynamique</FG>
<ED>Ozone; Pollution; Trajectory; Climate change; Atmospheric pollution forecasting; Precursor; Modeling; Tracers; Agricultural soil; Agricultural production; Agriculture; Food industry; Fertilizers; Fertilization; Transport process; Source localization</ED>
<EG>Dynamical climatology</EG>
<SD>Ozono; Polución; Trayectoria; Cambio climático; Previsión contaminación del ambiente; Precursor; Modelización; Trazador; Suelo agrícola; Producción agrícola; Agricultura; Industria alimenticia; Fertilizante; Fertilización; Fenómeno transporte; Localización fuente</SD>
<LO>INIST-8940B.354000192901550150</LO>
<ID>11-0255955</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000060 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000060 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0255955
   |texte=   Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023